

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Guide to the Saber API

You can interact with Saber as a web-service (explained in Quick Start: Web-service [https://baderlab.github.io/saber/quick_start/#web-service]), command line tool, or as a python package. If you created a virtual environment, remember to activate it first.

Command line tool

Currently, the command line tool simply trains the model. To use it, call

(saber) $ python -m saber.cli.train

along with any command line arguments. For example, to train the model on the NCBI Disease [https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/] corpus

(saber) $ python -m saber.cli.train --dataset_folder NCBI_Disease_BIO

!!! tip
See Resources: Datasets [https://baderlab.github.io/saber/resources/#datasets] for help preparing datasets and word embeddings for training.

Run python -m saber.cli.train --help to see all possible arguments.

Of course, supplying arguments at the command line can quickly become cumbersome. Saber also allows you to provide a configuration file, which can be specified like so

(saber) $ python -m saber.cli.train --config_filepath path/to/config.ini

Copy the contents of the default config file [https://github.com/BaderLab/saber/blob/master/saber/config.ini] to a new *.ini file in order to get started.

!!! note
Arguments supplied at the command line overwrite those found in the configuration file, e.g.,

```
(saber) $ python -m saber.cli.train --dataset_folder path/to/dataset --k_folds 10
```

would overwrite the arguments for `dataset_folder` and `k_folds` found in the configuration file.

Python package

You can also import Saber and interact with it as a python package. Saber exposes its functionality through the Saber class. Here is just about everything Saber does in one script:

from saber.saber import Saber

First, create a Saber object, which exposes Sabers functionality
saber = Saber()

Load a dataset and create a model (provide a list of datasets to use multi-task learning!)
saber.load_dataset('path/to/datasets/GENIA')
saber.build(model_name='MT-LSTM-CRF')

Train and save a model
saber.train()
saber.save('pretrained_models/GENIA')

Load a model
del saber
saber = Saber()
saber.load('pretrained_models/GENIA')

Perform prediction on raw text, get resulting annotation
raw_text = 'The phosphorylation of Hdm2 by MK2 promotes the ubiquitination of p53.'
annotation = saber.annotate(raw_text)

Use transfer learning to continue training on a new dataset
saber.load_dataset('path/to/datasets/CRAFT')
saber.train()

Transfer learning

Transfer learning is as easy as training, saving, loading, and then continuing training of a model. Here is an example

Create and train a model on GENIA corpus
saber = Saber()
saber.load_dataset('path/to/datasets/GENIA')
saber.build(model_name='MT-LSTM-CRF')
saber.train()
saber.save('pretrained_models/GENIA')

Load that model
del saber
saber = Saber()
saber.load('pretrained_models/GENIA')

Use transfer learning to continue training on a new dataset
saber.load_dataset('path/to/datasets/CRAFT')
saber.train()

!!! note
This is currently only supported by the mt-lstm-crf model.

Multi-task learning

Multi-task learning is as easy as specifying multiple dataset paths, either in the config file, at the command line via the flag --dataset_folder, or as an argument to load_dataset(). The number of datasets is arbitrary.

Here is an example using the last method

saber = Saber()

Simply pass multiple dataset paths as a list to load_dataset to use multi-task learning.
saber.load_dataset(['path/to/datasets/NCBI_Disease', 'path/to/datasets/Linnaeus'])

saber.build(model_name='MT-LSTM-CRF')
saber.train()

!!! note
This is currently only supported by the mt-lstm-crf model.

Training on GPUs

Saber will automatically train on as many GPUs as are available. In order for this to work, you must have CUDA [https://developer.nvidia.com/cuda-downloads] and, optionally, CudDNN [https://developer.nvidia.com/cudnn] installed. If you are using conda to manage your environment, then these are installed for you when you call

(saber) $ conda install tensorflow-gpu

Otherwise, install them yourself and use pip to install tensorflow-gpu

(saber) $ pip install tensorflow-gpu

To control which GPUs Saber trains on, you can use the CUDA_VISIBLE_DEVICES environment variable, e.g.,

To train exclusively on CPU
(saber) $ CUDA_VISIBLE_DEVICES="" python -m saber.cli.train

To train on 1 GPU with ID=0
(saber) $ CUDA_VISIBLE_DEVICES="0" python -m saber.cli.train

To train on 2 GPUs with IDs=0,2
(saber) $ CUDA_VISIBLE_DEVICES="0,2" python -m saber.cli.train

!!! tip
You can get information about your NVIDIA GPUs by typing nvidia-smi at the command line (assuming the GPUs are setup properly and the nvidia driver is installed).

Saving and loading models

In the following sections we introduce the saving and loading of models.

Saving a model

Assuming the model has already been created (see above), we can easily save our model like so

save_dir = 'path/to/pretrained_models/mymodel'
saber.save(save_dir)

Loading a model

Lets illustrate loading a model with a new Saber object

Delete our previous Saber object (if it exists)
del saber
Create a new Saber object
saber = Saber()
Load a previous model
saber.load(path_to_saved_model)

Installation

To install Saber, you will need python3.6. If not already installed, python3 can be installed via

	The official installer [https://www.python.org/downloads/]

	Homebrew [https://brew.sh], on MacOS (brew install python3)

	Miniconda3 [https://conda.io/miniconda.html] / Anaconda3 [https://www.anaconda.com/download/]

!!! note
Run python --version at the command line to make sure installation was successful. You may need to type python3 (not just python) depending on your install method.

(OPTIONAL) Activate your virtual environment (see below for help)

$ conda activate saber
Notice your command prompt has changed to indicate that the environment is active
(saber) $

Latest PyPI stable release

[image: _images/saber.svg]PyPI-Status [https://pypi.org/project/saber/]
[image: _images/saber1.svg]PyPI-Downloads [https://pypi.org/project/saber]
[image: _images/saber2.svg]Libraries-Dependents [https://github.com/baderlab/saber/network/dependents]

(saber) $ pip install saber

!!! error
The install from PyPI is currently broken, please install using the instructions below.

Latest development release on GitHub

[image: _images/saber3.svg]GitHub-Status [https://github.com/baderlab/saber/releases]
[image: _images/saber4.svg]GitHub-Stars [https://github.com/baderlab/saber/stargazers]
[image: _images/saber5.svg]GitHub-Forks [https://github.com/BaderLab/saber/network/members]
[image: _images/saber6.svg]GitHub-Commits [https://github.com/baderlab/saber/graphs/commit-activity]
[image: _images/saber7.svg]GitHub-Updated [https://github.com/baderlab/saber/pulse]

Pull and install straight from GitHub

(saber) $ pip install git+https://github.com/BaderLab/saber.git

or install by cloning the repository

(saber) $ git clone https://github.com/BaderLab/saber.git
(saber) $ cd saber

and then using either pip

(saber) $ pip install -e .

or setuptools

(saber) $ python setup.py install

!!! note
See Running tests for a way to verify your installation.

(OPTIONAL) Creating and activating virtual environments

When using pip it is generally recommended to install packages in a virtual environment to avoid modifying system state. To create a virtual environment named saber

Using virtualenv or venv

Using virtualenv [https://virtualenv.pypa.io/en/stable/]

$ virtualenv --python=python3 /path/to/new/venv/saber

Using venv [https://docs.python.org/3/library/venv.html]

$ python3 -m venv /path/to/new/venv/saber

Next, you need to activate the environment.

$ source /path/to/new/venv/saber/bin/activate
Notice your command prompt has changed to indicate that the environment is active
(saber) $

Using Conda

If you use Conda [https://conda.io/docs/] / Miniconda [https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh], you can create an environment named saber by running

$ conda create -n saber python=3.6

To activate the environment

$ conda activate saber
Notice your command prompt has changed to indicate that the environment is active
(saber) $

!!! note
You do not need to name the environment saber.

Running tests

Sabers test suite can be found in saber/tests. If Saber is already installed, you can run pytest on the installation directory

Install pytest
(saber) $ pip install pytest
Find out where Saber is installed
(saber) $ INSTALL_DIR=$(python -c "import os; import saber; print(os.path.dirname(saber.__file__))")
Run tests on that installation directory
(saber) $ python -m pytest $INSTALL_DIR

Alternatively, to clone Saber, install it, and run the test suite all in one go

(saber) $ git clone https://github.com/BaderLab/saber.git
(saber) $ cd saber
(saber) $ python setup.py test

Quick Start

If your goal is to use Saber to annotate biomedical text, then you can either use the web-service or a pre-trained model. If you simply want to check Saber out, without installing anything locally, try the Google Colaboratory notebook.

Google Colaboratory

The fastest way to check out Saber is by following along with the Google Colaboratory notebook ([image: _images/launch-Google%20Colab-orange.svg]Colab [https://colab.research.google.com/drive/1WD7oruVuTo6p_908MQWXRBdLF3Vw2MPo]). In order to be able to run the cells, select “Open in Playground” or, alternatively, save a copy to your own Google Drive account (File > Save a copy in Drive).

Web-service

To use Saber as a local web-service, run

(saber) $ python -m saber.cli.app

or, if you prefer, you can pull & run the Saber image from Docker Hub

Pull Saber image from Docker Hub
$ docker pull pathwaycommons/saber
Run docker (use `-dt` instead of `-it` to run container in background)
$ docker run -it --rm -p 5000:5000 --name saber pathwaycommons/saber

!!! tip
Alternatively, you can clone the GitHub repository and build the container from the Dockerfile with docker build -t saber .

There are currently two endpoints, /annotate/text and /annotate/pmid. Both expect a POST request with a JSON payload, e.g.

{
 "text": "The phosphorylation of Hdm2 by MK2 promotes the ubiquitination of p53."
}

or

{
 "pmid": 11835401
}

For example, with the web-service running locally

curl -X POST 'http://localhost:5000/annotate/text' \
--data '{"text": 'The phosphorylation of Hdm2 by MK2 promotes the ubiquitination of p53.'}'

import requests # assuming you have requests package installed!

url = "http://localhost:5000/annotate/pmid"
payload = {"text": "The phosphorylation of Hdm2 by MK2 promotes the ubiquitination of p53."}
response = requests.post(url, json=payload)

print(response.text)
print(response.status_code, response.reason)

!!! warning
The first request to the web-service will be slow (~60s). This is because a large language
model needs to be loaded into memory.

Documentation for the Saber web-service API can be found here [https://baderlab.github.io/saber-api-docs/]. We hope to provide a live version of the web-service soon!

Pre-trained models

First, import Saber. This class coordinates training, annotation, saving and loading of models and datasets. In short, this is the interface to Saber.

from saber.saber import Saber

To load a pre-trained model, first create a Saber object

saber = Saber()

and then load the model of our choice

saber.load('PRGE')

!!! tip
See Resources: Pre-trained models for pre-trained model names and details. You will need an internet connection to download a pre-trained model.

To annotate text with the model, just call the Saber.annotate() method

saber.annotate("The phosphorylation of Hdm2 by MK2 promotes the ubiquitination of p53.")

!!! warning
The Saber.annotate() method will be slow the first time you call it (~60s). This is because a large language model needs to be loaded into memory.

Coreference Resolution

Coreference [https://en.wikipedia.org/wiki/Coreference] occurs when two or more expressions in a text refer to the same person or thing, that is, they have the same referent. Take the following example:

“IL-6 supports tumour growth and metastasising in terminal patients, and it significantly engages in cancer cachexia (including anorexia) and depression associated with malignancy.”

Clearly, “it” referes to “IL-6”. If we do not resolve this coreference, then “it” will not be labeled as an entity and any relation or event it is mentioned in will not be extracted. Saber uses NeuralCoref [https://github.com/huggingface/neuralcoref], a state-of-the-art coreference resolution tool based on neural nets and built on top of Spacy [https://spacy.io]. To use it, just supply the argument coref=True (which is False by default) to the Saber.annotate() method

text = "IL-6 supports tumour growth and metastasising in terminal patients, and it significantly engages in cancer cachexia (including anorexia) and depression associated with malignancy."
WITHOUT coreference resolution
saber.annotate(text, coref=False)
WITH coreference resolution
saber.annotate(text, coref=True)

!!! note
If you are using the web-service, simply supply "coref": true in your JSON payload to resolve coreferences.

Saber currently takes the simplest possible approach: replace all coreference mentions with their referent, and then feed the resolved text to the model that identifies named entities.

Grounding

Grounding (sometimes called entity linking or normalization) involves mapping each annotated entity to a unique identifier in an external resource such as a database or ontology. To ground entities in a call to Saber.annotate(), simply pass the argument ground=True

saber.annotate('The phosphorylation of Hdm2 by MK2 promotes the ubiquitination of p53.', ground=True)

The grounding functionality is implemented by the EXTRACT 2.0 API [https://extract.jensenlab.org/]. Note that you will need an internet connection or grounding will fail. Also note that Saber.annotate() will take slightly longer to return a response when ground=True (up to a few seconds).

See Resources: Pre-trained models for a list of the the external resources each entity type (annotated by the pre-trained models) is grounded to.

!!! note
If you are using the web-service, simply supply "ground": true in your JSON payload to ground entities.

Working with annotations

The Saber.annotate() method returns a simple dict object

ann = saber.annotate("The phosphorylation of Hdm2 by MK2 promotes the ubiquitination of p53.")

which contains the keys title, text and ents

	title: contains the title of the article, if provided

	text: contains the text (which is minimally processed) the model was deployed on

	ents: contains a list of entities present in the text that were annotated by the model

For example, to see all entities annotated by the model, call

ann['ents']

Converting annotations to JSON

The Saber.annotate() method returns a dict object, but can be converted to a JSON formatted string for ease-of-use in downstream applications

import json

convert to json object
json_ann = json.dumps(ann)

convert back to python dictionary
ann = json.loads(json_ann)

Resources

Saber is ready to go out-of-the box when using the web-service or a pre-trained model. However, if you plan on training you own models, you will need to provide a dataset (or datasets!) and, ideally, pre-trained word embeddings.

Pre-trained models

Pre-trained model names can be passed to Saber.load() (see Quick Start: Pre-trained Models [https://baderlab.github.io/saber/quick_start/#pre-trained-models]). Appending "*-large" to the model name (e.g. "PRGE-large" will download a much larger model, which should perform slightly better than the base model.

Identifier | Semantic Group | Identified entity types | Namespace |
———- | ————– | ———————– | ——— |
CHED | Chemicals | Abbreviations and Acronyms, Molecular Formulas, Chemical database identifiers, IUPAC names, Trivial (common names of chemicals and trademark names), Family (chemical families with a defined structure) and Multiple (non-continuous mentions of chemicals in text) | PubChem Compounds [https://pubchem.ncbi.nlm.nih.gov/]
DISO | Disorders | Acquired Abnormality, Anatomical Abnormality, Cell or Molecular Dysfunction, Congenital Abnormality, Disease or Syndrome, Mental or Behavioral Dysfunction, Neoplastic Process, Pathologic Function, Sign or Symptom | Disease Ontology [http://disease-ontology.org/]
LIVB | Organisms | Species, Taxa | NCBI Taxonomy [https://www.ncbi.nlm.nih.gov/taxonomy]
PRGE | Genes and Gene Products | Genes, Gene Products | STRING [https://string-db.org/]

Datasets

Currently, Saber requires corpora to be in a CoNLL format with a BIO or IOBES tag scheme, e.g.:

Selegiline	B-CHED
-	O
induced	O
postural	B-DISO
hypotension	I-DISO
...

Corpora in such a format are collected in here [https://github.com/BaderLab/Biomedical-Corpora] for convenience.

!!! info
Many of the corpora in the BIO and IOBES tag format were originally collected by Crichton et al., 2017 [https://doi.org/10.1186/s12859-017-1776-8], here [https://github.com/cambridgeltl/MTL-Bioinformatics-2016].

In this format, the first column contains each token of an input sentence, the last column contains the tokens tag, all columns are separated by tabs, and all sentences by a newline.

Of course, not all corpora are distributed in the CoNLL format:

	Corpora in the Standoff format can be converted to CoNLL format using this [https://github.com/spyysalo/standoff2conll] tool.

	Corpora in PubTator format can be converted to Standoff first using this [https://github.com/spyysalo/pubtator] tool.

Saber infers the “training strategy” based on the structure of the dataset folder:

	To use k-fold cross-validation, simply provide a train.* file in your dataset folder.

E.g.

.
├── NCBI_Disease
│ └── train.tsv

	To use a train/valid/test strategy, provide train.* and test.* files in your dataset folder. Optionally, you can provide a valid.* file. If not provided, a random 10% of examples from train.* are used as the validation set.

E.g.

.
├── NCBI_Disease
│ ├── test.tsv
│ └── train.tsv

Word embeddings

When training new models, you can (and should) provide your own pre-trained word embeddings with the pretrained_embeddings argument (either at the command line or in the configuration file). Saber expects all word embeddings to be in the word2vec file format. Pyysalo et al. 2013 [https://pdfs.semanticscholar.org/e2f2/8568031e1902d4f8ee818261f0f2c20de6dd.pdf] provide word embeddings that work quite well in the biomedical domain, which can be downloaded here [http://bio.nlplab.org]. Alternatively, from the command line call:

Replace this with a location you want to save the embeddings to
$ mkdir path/to/word_embeddings
Note: this file is over 4GB
$ wget http://evexdb.org/pmresources/vec-space-models/wikipedia-pubmed-and-PMC-w2v.bin -O path/to/word_embeddings

To use these word embeddings with Saber, provide their path in the pretrained_embeddings argument (either in the config file or at the command line). Alternatively, pass their path to Saber.load_embeddings(). For example:

from saber.saber import Saber

saber = Saber()

saber.load_dataset('path/to/dataset')
load the embeddings here
saber.load_embeddings('path/to/word_embeddings')

saber.build()
saber.train()

GloVe

To use GloVe [https://nlp.stanford.edu/projects/glove/] embeddings, just convert them to the word2vec [https://code.google.com/archive/p/word2vec/] format first:

(saber) $ python
>>> from gensim.scripts.glove2word2vec import glove2word2vec
>>> glove_input_file = 'glove.txt'
>>> word2vec_output_file = 'word2vec.txt'
>>> glove2word2vec(glove_input_file, word2vec_output_file)

 _static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

